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a b s t r a c t

The Atlantic Meridional Overturning Circulation (AMOC) is a key feature of the climate system. However,
its role during climate change is still poorly constrained particularly during an Interglacial to Glacial
climate transition and the associated global cooling. We present here the first reconstruction of the
evolution of the vertical structure of the rate of the AMOC from the Last Interglaciation to the subsequent
glaciation (128,000e60,000 years ago) based on sedimentary (231Pa/230Th) records. We show a deep
AMOC during the interglacial warmth Marine Isotope Stage (MIS) 5.5 and a shallower glacial one during
glacial MIS 4. The change between these two patterns occurred mostly during the glacial inception, i.e.
the transition from MIS 5.5 to MIS 5.4. Our data show that AMOC was enhanced during this latter
transition as a consequence of a large increase of the overturning rate of the Intermediate Waters, above
2500 m. We suggest that this AMOC pattern required a reinforced Gulf Stream-North Atlantic Current
system that ultimately supported ice-sheet growth by providing heat and moisture to the Northern high
latitudes. From MIS 5.4 to MIS 5.1, the AMOC was broadly continuous below 2000 m and supported
periods of ice-sheet growth. As a result, a glacial AMOC is triggered at the beginning of MIS 4 due to the
extension of ice-sheet and the subsequent reorganization of deep-water formation. This study highlights
the role of intermediate waters as a major player during climate change.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is one
of the most important ocean current system for the climate of the
Earth, in particular because it controls the amount of northward
heat transport in the northern hemisphere and the repartition of
both water masses and chemical species, notably CO2. Under
modern conditions, the AMOC is composed of a surface current
flowing northward from the tropics to the high latitudes, through
the Gulf Stream and the North Atlantic Current, and a deep-water
mass flowing southward: the North Atlantic Deep Water (NADW).
At high latitudes, in the Nordic Seas and in the Labrador Sea, the
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warm and saline surface water, transported from the tropics, cools
and loses buoyancy. These waters sink to form the NADW. Thus, the
surface currents and the NADW are ultimately linked (Labeyrie
et al., 1999). The AMOC is controlled by external and internal
forcing mechanisms (Rahmstorf, 2002; Kuhlbrodt et al., 2007), e.g.
insolation, freshwater flux, ice-sheet dynamics, vertical mixing in
the ocean’s interior and wind-induced Ekman upwelling in the
Southern Ocean. However the sensitivity of the AMOC to these
forcings remains elusive.

This study brings major constraints on the response of the
AMOC to the forcing mechanisms by a detailed study of the Last
Interglaciation and the subsequent glaciation (128,000 to 60,000
years ago). The Last Interglaciation was characterized by reduced
ice volume at high Northern latitude during the warm Marine
Isotope Stage (MIS) 5.5 (Koerner, 1989; de Vernal and Hillaire-
Marcel, 2008) rapidly followed by ice-sheet growth in response
to the climatic amplification of insolation forcing (Khodri et al.,
2001; Waelbroeck et al., 2002; Wang and Mysak, 2002; Rohling
et al., 2008). While numerous proxy data and model simulations
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Fig. 1. Map showing the location of the cores used in this study. The stars show the
location of the cores which were analysed for (231Pa/230Th): cores MD95-2037
(37.09�N, 32.04�W, 2159 m water depth) (this study), SU90-03 (40.07�N, 32.02�W,
2475 m water depth) (this study) and SU90-08 (42.05�N, 32.03�W, 3080 m water
depth) (this study) on the slopes of the mid Atlantic Ridge; core MD01-2446 (39.05�N,
12.62�W, 3547 m water depth) (Guihou et al., 2010) off the Iberian Margin and core
SU90-11 (44.07�N, 40.02�W, 3645 m water depth) (Guihou et al., 2010) from the
western North Atlantic basin. The squares show the location of reference cores ODP980
(55.48�N, 14.70�W, 2168 m) and MD95-2042 (37.80�N, 10.17�W, 3146 m) used for
latitudinal sea surface temperature (SST) gradient reconstructions (Fig. 5c). The map
was generated with Ocean Data View (http://odv.awi.de/en/home/).
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are available for the transition from the warm optimum MIS 5.5 to
the colder MIS 5.4, i.e. the glacial inception, there is little infor-
mation covering the full transition up to glacial MIS 4. Moreover,
studies aiming at understanding the AMOC response to the Last
Glacial Inception are based on proxies which are indirectly linked to
ocean circulation such as benthic foraminifera d13C (Duplessy et al.,
1988) or foraminifera calcite Cd/Ca (Adkins et al., 1997) that mostly
depict deep-water chemical properties. LeGrand and Wunsch
(1995) showed that deep ocean circulation is indeed poorly con-
strained by such proxies, which are strongly affected by changes in
biological productivity and in the carbon cycle.

In order to better constrain the processes at the origin of AMOC
variability in response to climate change, we used a proxy e the
sedimentary 231Pa/230Th excess activity ratio decay corrected to the
time of deposition (hereafter referred to as (231Pa/230Th)) e that is
more directly dependent on the rate of the AMOC. Both 231Pa and
230Th are produced in the water column by the radioactive decay of
dissolved U with a constant production activity ratio of 0.093. The
(231Pa/230Th) proxy is based on the difference between the resi-
dence time of the two radionuclides in the water column: w200
years for 231Pa and w30 years for 230Th (Yu et al., 1996; Francois,
2007). Under modern conditions, the residence time of 231Pa in
the water column is on the same order of magnitude as that of
NADW in the North Atlantic. Therefore, 231Pa can, in part, be
exported out of the North Atlantic by deep-water circulation, while
most of the 230Th is scavenged locally to the sea floor by settling
particles. Under modern conditions, the (231Pa/230Th) values above
2200 m water depth are around 0.093 (Yu et al., 1996; Hall et al.,
2006; Gherardi et al., 2009) e the water column production ratio,
whereas at greater depth (231Pa/230Th) are lower, typically around
0.05 (Yu et al., 1996; McManus et al., 2004; Gherardi et al., 2009),
which indicates a large export of 231Pa out of the North Atlantic by
deep circulation. Due to the high affinity of 231Pa for biogenic opal
(Walter et al., 1997; Chase et al., 2002), changes in opal fluxes may
complicate interpretation of (231Pa/230Th) records (Keigwin and
Boyle, 2008; Gil et al., 2009; Lippold et al., 2009). So far, it is
assumed that direct comparisons of biogenic opal fluxes with
(231Pa/230Th) in the same samples are reliable indicators of the
influence of biogenic opal fluxes changes on (231Pa/230Th) records
(Francois et al., 1997; Bradtmiller et al., 2007). Following this
approach, the (231Pa/230Th) has been successfully used to recon-
struct AMOC variations for the Holocene, the Last Glacial Maximum
(LGM) and the Last Deglaciation (Yu et al., 1996; McManus et al.,
2004; Hall et al., 2006; Gherardi et al., 2009, 2010; Negre et al.,
2010).

Guihou et al. (2010) have demonstrated that (231Pa/230Th) is
suited to follow AMOC variations for deep-water masses (around
3500 m) during MIS 5 which expands the use of the (231Pa/230Th)
proxy to its temporal limit at about 2e4 231Pa half-lives.

In order to investigate the response of the AMOC to the chain of
events leading the establishment of the last glacial period, we
present here new (231Pa/230Th) data from intermediate depth North
Atlantic sediment cores coupled with published results from deep
North Atlantic sites (Guihou et al., 2010) over the period
128,000e60,000 years ago. We studied past changes in the inter-
mediate and deep AMOC by reconstructing the vertical structure of
the rate of the AMOC for key intervals of the Last Interglaciation and
the subsequent glaciation.

2. Materials and methods

In order to explore the variability of the (231Pa/230Th) with water
depth and time, we studied a set of sediment cores located in the
North Atlantic Ocean in a narrow latitudinal range between 37�N
and 44�N (Fig. 1), a zone that is optimal to monitor changes in the
rate of the AMOC as modeled by Siddall et al. (2007) and Luo et al.
(2010). We have chosen cores located off the margins to avoid the
effect of boundary scavenging on (231Pa/230Th) (Bacon, 1988). A
common stratigraphy for the cores has been established based on
conventional d18O correlation (Fig. 2).

Pa, Th and U have been extracted from 200 mg of bulk sediment
for each analysis. The analytical process was conducted following
Guihou et al. (2010) in a class 10,000 clean laboratory at Laboratoire
de Géologie de Lyon, France (LGL, ENS Lyon). Briefly, samples were
spiked with 229Th, 236U and 233Pa. The latter was obtained from the
milking of a 237Np mother solution. After sediment digestion and
spike equilibration, Pa, Th and U were extracted from the matrix by
iron oxyhydroxide precipitation at pH 8e10. Pa, Th and Uwere then
separated by anion exchange chromatography using BioRad� AG1-
x8 resin. Both Pa and Th fractions were further purified by anion
exchange chromatography (BioRad� AG1-x8 resin). The Pa, Th and
U fractions were measured by Multi-Collector Inductively Coupled
Plasma Mass Spectrometer (MC-ICPMS Nu 500 HR, Nu
Instrument�) using multi-ion counters on the French National
Facility Instrument (INSU-CNRS) at the LGL, ENS Lyon. Each sample
analysis was bracketed using the IRMM 184 isotopic uranium
standard to correct for instrumental mass bias and ion-counters
gain. Results were corrected for instrumental and chemistry back-
ground and then reduced to calculate excess fractions following
Thomas et al. (2007). A detrital (238U/232Th) ratio of 0.5 � 0.1 was
used (Guihou et al., 2010). Uncertainties on the (231Pa/230Th) were
calculated by error propagation assuming independent and nor-
mally distributed variables, they are typically about �0.005 (1 SD).

http://odv.awi.de/en/home/


Fig. 3. Comparison of the biogenic opal flux (normalized to 230Th) to the (231Pa/230Th)
of core SU90-11 (circles) (Guihou et al., 2010), MD01-2446 (squares) (Guihou et al.,
2010) and MD95-2037 (crosses). For core SU90-11, 30 samples were analysed for the
abundance of siliceous microfossils, dark green means that silicoflagellates valves were
present in the analysed samples while light green means that silicoflagellates valves
were absent. For each core, the correlation coefficient (r) is shown. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. (231Pa/230Th) records from the 5 cores considered in this study. (231Pa/230Th)
data from Black arrows indicate the water column (231Pa/230Th) production ratio, i.e.
0.093. Error bars represent the propagated standard deviation (1 SD) (Guihou et al.,
2010). Benthic (C. wuellerstorfi) d18O records of cores MD95-2037 (red dots), SU90-
03 (green dots), SU90-08 (blue dots), SU90-11 (purple dots), MD95-2042 (orange
dots) (Shackleton et al., 2003) and ODP980 (light grey dots) (Oppo et al., 2006) on the
age scale derived from our stratigraphic framework. The curves are 3 point-running
averages. The shaded areas represent the time periods emphasized in Section 3.2
(i.e. MIS 5.5 (126,000e118,000 years ago), MIS 5.4 (113,000e107,000 years ago) and
MIS 4 (69,000e60,000 years ago)). Marine Isotope Stages are indicated at the top and
the bottom of the figure. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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3. Results and discussion

The amplitudes and trends of the (231Pa/230Th) downcore
profiles differ with water depth (Fig. 2, Supplementary Material).
The shallowest record displays the largest (231Pa/230Th) change at
the transition fromMIS 5.5 to MIS 5.4, from values close to 0.093 e

the production ratioe to values around 0.045 while fromMIS 5.4 to
MIS 4 (231Pa/230Th) display only minor variations around 0.05. The
(231Pa/230Th) records of the cores located at 2475 m and 3080 m
exhibit the same general trends with the highest values during MIS
5.5 and lower values corresponding to MIS 5.4 and MIS 4. The
(231Pa/230Th) records of the deepest cores (Guihou et al., 2010)
exhibit a trend opposite to those of the shallower sites. Their
(231Pa/230Th) values are close to 0.05 during MIS 5.5 and slightly
increase towards MIS 4 to values close to 0.065.

3.1. Assessing the validity of the (231Pa/230Th) records as AMOC
proxies

While (231Pa/230Th) has been successfully used to reconstruct
AMOC variations ((Gherardi et al., 2009) and references therein)
change in biogenic opal flux have been proposed as a candidate that
could account for (231Pa/230Th) variability (Keigwin and Boyle,
2008; Gil et al., 2009; Lippold et al., 2009), as Pa has a high
affinity for opal (Walter et al., 1997; Chase et al., 2002). To constrain
the potential local effect of biogenic opal, we calculated the
biogenic opal fluxes in the three highest resolution records by
normalizing the biogenic opal content (Supplementary Material) e
measured by molybdate-blue spectrophotometry (Mortlock and
Froelich, 1989) e to the 230Th flux (Francois et al., 2004). Addi-
tionally, abundance of siliceous microfossils (mainly diatoms) were
analysed in 30 samples of core SU90-11. Both methods are
described in details by Guihou et al. (2010). Although the biogenic
opal flux may be underestimated due to dissolution before or
during burial, silicoflagellates valves, which indicate good preser-
vation of biogenic opal (Hurd and Aston,1983; Romero et al., 2002),
were counted in 13 samples of core SU90-11 (Fig. 3). There is no
correlation between the amount of silicoflagellates valves and
230Th-normalized opal flux (Fig. 3). Thus opal dissolution cannot
account for the variations in the opal flux at the analysed core
sections. For the remaining samples of core SU90-11 and in the
other cores, we chose to focus on measuring the opal content
because counting is (1) highly time/cost consuming and (2) not
fully relevant for assessing the potential effect of biogenic opal on
(231Pa/230Th) records (Guihou et al., 2010). The correlation between
230Th-normalized opal flux and (231Pa/230Th) is poor for SU90-11
and negative, i.e. opposite to what is expected, for the two other
cores (Fig. 3). These results show that the (231Pa/230Th) records are



Fig. 4. Vertical profiles of the rate of the AMOC reconstructed over the Last Glacial
Inception. (a.) Vertical profiles of averaged (231Pa/230Th) over MIS 5.5 (126,000 e

118,000 years ago; red circles) and the Holocene (red squares). (b.) Vertical profiles of
averaged (231Pa/230Th) over MIS 4 (69,000 e 60,000 years ago; blue circles) and the
Last Glacial Maximum (blue squares). Holocene and LGM data are from Jaccard et al.
(2007) and Gherardi et al. (2009). The stars show the cores that were utilized both
in this study for MIS 5.5 and 4 and in Jaccard et al. (2007) and Gherardi et al. (2009).
Error bars are 2s. (c.) (231Pa/230Th) changes of MIS 5.4 (period from 113,000 to 107,000
years ago, orange line and filled squares) and MIS 4 (blue dashed line and filled circles)
relative to MIS 5.5. The value for MIS 5.4 of core SU90-08 has been calculated by
averaging the two data points that bracket the period from 113,000 to 107,000 years
ago. Error bars are 2s. The vertical dashed line is the line of no change compared to
MIS 5.5 average. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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not primarily controlled by local changes in biogenic opal flux. One
could argue that remote changes in diatom productivity would
affect the (231Pa/230Th). Indeed, a model by Luo et al. (2010) has
shown that remote changes in opal flux can produce large changes
in (231Pa/230Th) but also that these changes will be localized.
Moreover, the (231Pa/230Th) records from cores SU90-11 (3645 m)
andMD01-2446 (3547m) are very similar (Fig. 2) although they are
located in the western and eastern North Atlantic basins respec-
tively and their biogenic opal flux differ (Fig. 3) (Guihou et al., 2010).

In the studied cores, local or remote variations in opal flux fail to
explain the (231Pa/230Th) variations which can therefore be inter-
preted in terms of changes in the rate of the AMOC. Therefore, the
three shallowest cores show generally increasing overturning rate
from MIS 5.5 to MIS 4 while the two deepest cores, below 3500 m,
show generally decreasing overturning rate over the same time
period (Fig. 2).

3.2. Evolution of the vertical structure of the AMOC for specific time
slices

In order to depict the vertical structure of the rate of the AMOC
down to 3700 m during the Last Interglaciation and the subsequent
glaciation, the (231Pa/230Th) record of each core was averaged over
key time slices of this period of time: MIS 5.5 (126,000e118,000
years ago), MIS 5.4 (113,000e107,000 years ago) and MIS 4
(69,000e60,000 years ago) (Figs. 2 and 4).

3.2.1. AMOC vertical structure during MIS 5.5
During MIS 5.5, the overturning rate was high between 2200 m

and 3600 m water depth and weak above 2200 m (Fig. 4a). The
(231Pa/230Th) values recorded in this study forMIS 5.5 are remarkably
similar to the values recorded for the Holocene (Fig. 4a). This AMOC
structure is consistentwith overturningof dense surfacewater in the
Nordic seas (Duplessy et al., 2007) then flowing southward below
2200mwaterdepth.Henceduring thewarmoptimumofMIS 5.5, the
structure of the AMOC was similar to the Modern one.

3.2.2. AMOC vertical structure: glacial MIS 4
During the glacial MIS 4, the depth range where the overturning

rate was the highest was centered around 2500 m whereas the
overturning rate around 3500 m was lower than that of MIS 5.5
(Fig. 4b,c). This AMOC pattern is similar to the one of the LGM with
(231Pa/230Th) values similar to the LGM ones (Fig. 4b). This pattern
depicts a Glacial mode (Rahmstorf, 2002) for the AMOC for both
MIS 4 and the LGM. We hypothesize that during MIS 4, deep-water
formation did not occur in the Nordic Seas but mostly south of the
Iceland-Scotland ridge as a consequence of the extension of the
continental ice cover. Consequently, the Polar Front shifted south-
ward due to changes in atmospheric circulation through the
development of a polar vortex over the Greenland ice-sheet
(Labeyrie et al., 1999). Thus, the extension of cold and low salinity
surface waters in the Nordic Seas prevented their sinking to the
abyss (Duplessy and Shackleton, 1985). The water mass, which sank
south of the Scotland e Iceland ridge, was thus flowing around
2500 m and the pattern of AMOC during MIS 4 was dramatically
different from that of MIS 5.5. Our study shows that there is
a consistency between the vertical structure of the rate of the
AMOC for the last two glacial maxima of the last climate cycle and
points out the recurrence of two modes of ocean circulation asso-
ciated with Interglacials and Glacials.

3.2.3. AMOC vertical structure: glacial inception (from MIS 5.5 to
MIS 5.4)

A detailed analysis of the (231Pa/230Th) profile during MIS 5.4
(Fig. 4c) sheds light on the mechanisms involved into the transition
between the interglacial and the glacial mode of ocean circulation.
Around 3500 mwater depth, the (231Pa/230Th) values of MIS 5.4 are
similar to those of MIS 5.5 (Fig. 4c), indicating the presence of
a deep overturning during both periods. Above 2500 m water
depth, the (231Pa/230Th) values are significantly lower during MIS
5.4 than during MIS 5.5, with the largest magnitude of change
occurring at 2200m (Fig. 4c). Accordingly, the rate of overturning at
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intermediate depth was higher during MIS 5.4 than during MIS 5.5.
This view is supported by the model of Luo et al. (2010) showing
that an increase in the overturning rate at intermediate depth result
in a sharp decrease in (231Pa/230Th) at the corresponding depth, and
a rapid attenuation of the signal below. The increase of the over-
turning rate around 2200m started at 120,000 years ago, i.e. during
MIS 5.5. It followed the decrease in Northern Hemisphere summer
insolation which favoured the initiation of ice-sheet growth
(Khodri et al., 2001) (Fig. 5a,b). Conversely, the overturning rate
remained constant around 3500 m. Consequently, overturning of
dense surface water must have occurred in the Nordic Seas during
that period. This feature is consistent with high benthic d13C in the
Norwegian Sea sediments (Labeyrie et al., 1987) due to inflow of
warm, saline and ventilated waters along the Norwegian coast
(Risebrobakken et al., 2007; Born et al., in press) which sank during
winter. Bauch and Erlenkeuser (2008) have also shown that above
Fig. 5. Climate reconstruction from MIS 5.5 to MIS 4. (a.) (231Pa/230Th) of the three
highest resolution cores, (b.) Summer insolation integrated from June 21st to
September 21st at 65�N (Berger, 1978) (c.) MD95-2042 summer SST derived from
foraminifera assemblages (Cayre et al., 1999) depicting SST changes at 37.5�N (orange
line) and ODP980 (55.48�N, 14.70�W, 2168 m) summer SST derived from foraminifera
assemblages (Oppo et al., 2006) depicting SST changes at high latitudes (green line).
(d.) Sea level reconstruction relative to the modern one (Waelbroeck et al., 2002). The
shaded areas are the time periods emphasized in Section 3.2. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
the Vøring Plateau (located between the Norwegian Sea and the
Norwegian coast) the end of MIS 5.5 is characterized by warm and
saline surface waters.

Although our (231Pa/230Th) data show that the overturning rate
remained globally unchanged around 3500 m between MIS 5.5 and
MIS 5.4, the time-resolution is not as detailed as other paleoclimatic
reconstructions. Indeed, high resolution SST reconstructions in the
northeast Atlantic and in the Nordic Sea shows that the input of
warm waters may not have been constant over that period as short
term climate cooling phases have been evidenced (Fronval et al.,
1998; Bauch and Kandiano, 2007). These events may have affected
deep-water formation as suggested by increased Cd/Ca, a proxy for
deep-water chemistry, that show that waters originating from the
Southern Ocean were present at 4200 m in the Western North
Atlantic (Adkins et al., 1997) in agreement with an early increase in
Antarctic Bottom Water formation (Govin et al., 2009).

The continuity equation requires that the increase of Interme-
diate Water overturning rate together with constant overturning
rate around 3500 m at the end of MIS 5.5 and during MIS 5.4 is
balanced by an enhanced Gulf Stream-North Atlantic Current
system. This strong Gulf Stream-North Atlantic Current system
resulted from the increased latitudinal temperature gradient
during the MIS 5.4 to MIS 5.5 transition (Fig. 5c). It carried heat and
moisture from the tropics to the Northern high latitudes and thus
contributed to feed ice-sheet growth over the Laurentide
(Ruddiman and McIntyre, 1981) and Scandinavia (Baumann et al.,
1995; Bonelli et al., 2009).

3.3. AMOC: from the end of MIS 5.4 to the beginning of MIS 4

After MIS 5.4 and up to the beginning of MIS 4, the (231Pa/230Th)
values are well below the production ratio between 2000 m and
3500 mwater depth with second order substage variations (Figs. 2
and 5a). Above 2200 m, the overturning rate was lower during MIS
5.3 and MIS 5.1 than during MIS 5.2 but the amplitude of these
oscillationswere smaller than that of theMIS 5.5/MIS 5.4 transition.
In the two deepest cores, substages variations have also been
recognized with higher overturning rate duringMIS 5.3 andMIS 5.1
than during MIS 5.2. This substage variability has been ascribed to
the dynamics of the ice-sheet and its effect on the formation of
deep-water through changes in atmospheric and sea surface
patterns (Guihou et al., 2010). However, the main pattern that
emerges from our shallow and deep (231Pa/230Th) records with
values well below the production ratio (Figs. 2 and 5a) is a broadly
continuous AMOC below 2000 m during MIS 5.3, 5.2 and 5.1. By
bringing moisture and heat to the northern high latitudes, this
continuous overturning supported periods of ice-sheet growth
which are shown by the variations of the sea level (Fig. 5d).

The vertical structure of the rate of the AMOC during MIS 4 is
therefore a consequence of ice-sheet growth that is fuelled by
a strong Gulf Stream-North Atlantic Current system. Ultimately, at
the beginning of MIS 4, the extension of the ice-sheets caused the
southward displacement of the polar front and prevented the
penetration of warm and saline surface waters into the Nordic Seas.
This new surface circulation mode did not any more permit deep-
water formation in the Nordic Seas but favoured sinking of surface
water in the Atlantic Ocean, south of Norwegian-Iceland-Greenland
sill duringwinter. This resulted in an IntermediateWater circulation.

4. Conclusion

These results provide compelling evidence that the rate of the
AMOC was enhanced during the Last Glacial Inception. While the
Northern high latitudes cooled down as a response to the decrease
in Northern summer insolation, the AMOC was enhanced by the
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increase in the latitudinal temperature gradient. The AMOC trans-
ported heat and moisture to the Northern high latitudes feeding
ice-sheet growth. The AMOC thus acted as a strong positive feed-
back to fuel ice-sheet growth during the glacial inception. This
increase in the rate of the AMOC was controlled by changes in the
overturning rate of Intermediate Waters, i.e. around 2000 m. This
water mass appears to be sensitive to changes in continental ice
cover through atmospheric and sea surface patterns. An improved
understanding of the physical mechanisms that drive Intermediate
Water formation in the North Atlantic should thus remain a high
priority for future investigations.
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